Đề thi học sinh giỏi giải toán trên máy tính cầm tay tỉnh Thanh Hóa năm 2012 môn Toán lớp 9 - Có đáp án Đề thi học sinh giỏi giải toán trên máy tính lớp 9

  • Phát hành Sở GD-ĐT Thanh Hóa
  • Đánh giá 30 đánh giá
  • Lượt tải 16.993
  • Sử dụng Miễn phí
  • Dung lượng 271 KB
  • Cập nhật 06/01/2017

Giới thiệu

Đề thi học sinh giỏi môn Toán lớp 9 - Có đáp án

Đề thi học sinh giỏi giải toán trên máy tính lớp 9 dành cho các bạn học sinh lớp 9 đang ôn thi lên lớp 10, ôn thi hết học kỳ 1 và ôn thi hết học kỳ 2 lớp 9. Các bạn có thể tải miễn phí đề thi này về máy và thực hành đánh giá khả năng của bản thân trước khi tham gia vào những kỳ thi trên.

SỞ GIÁO DỤC VÀ ĐÀO TẠO
THANH HÓA
(Đề thi chính thức)

KỲTHI CHỌN HỌC SINH GIỎI LỚP 9 THCS
GIẢI TOÁN TRÊN MÁY TÍNH CẦM TAY NĂM HỌC 2011- 2012

MÔN THI: TOÁN
Thời gian làm bài: 150 phút (không kể thời gian giao đề)
--------------------------------------------------------------------------------

Câu 1: (2 điểm)

Hãy tính giá trị của biểu thức: 

Câu 2: (2 điểm)

Tìm nghiệm nguyên của phương trình: x + xy + y = 7

Câu 3: (2 điểm)

Cho tam giác ABC có AB = 3cm; BC = 4cm ; CA = 5cm. Các đường cao BH, đường phân giác BD, đường trung tuyến BP chia tam giác thành 4 phần. Hãy tính diện tích mỗi phần

Câu 4: (2 điểm)

Giải phương trình: (x2 + 3x + 2) (x2 + 7x + 12) = 3

Câu 5: (2 điểm)

Cho hình chóp S.ABC có AB = AC = a , góc BAC bằng 1200, SA = SB = SC = 3a.

a. Tính thể tích hình chóp S.ABC.

b. Áp dụng với 

Câu 6: (2 điểm)

Tính tổng:

Câu 7: (2 điểm)

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. SA = a và SA vuông góc với mặt phẳng ABCD. Kẻ AE⊥SB, AF⊥SD. Gọi K là giao điểm của SC với mặt phẳng AEF.

a. Tính diện tích tứ giác AEKF.

b. Áp dụng với 

Câu 8: (2 điểm)

Tìm nghiệm nguyên của hệ phương trình: 

Câu 9: (2 điểm)

Cho tam giác ABC có BC = a, CA = b, BA = c. Từ một điểm M trong tam giác hạcác đường vuông góc MA1, MBvà MCxuống các đường thẳng BC, CA và AB. Với vị trí nào của M thì đạt giá trị nhỏ nhất. Xác định giá trị nhỏ nhất đó với 

Câu 10: (2 điểm)

Cho các số thực dương x, y, z thoả mãn: x ≥ y ≥ z và 32 - 3x2 = z2 = 16 - 4y2. Tìm giá trị lớn nhất của A = xy + yz + zx. Với x, y, z bằng bao nhiêu thì A đạt giá trị lớn nhất.

Download tài liệu để xem thêm chi tiết